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A B S T R A C T

Articular cartilage (AC) is the tissue that wraps moving joints in the body. As a tissue, it provides lubrication as well as load bearing in 
some joints. The tissue is subject to harsh chemical and mechanical environments in vivo and is characterized by being devoid of blood, 
nerve and lymph nodes. Upon injury, the tissue is incapable of healing. Damaged AC tissues mark the global disease of osteoarthritis (OA). 
As a pandemic, OA is prevalent worldwide and is ranked first for which patients seek treatments. Unfortunately, the disease has no current 
disease modifying drugs and it is only managed for symptomatic relief using pain killers, physical therapy and surgical procedures. In 
search for less invasive treatments, tissue engineering has been sought to provide the alternative. Tissue engineering refers to creation of 
eventually personalized tissues that can be used to replace damaged tissues in vitro. As an approach, it relies on seeding cells on scaffolds 
and incorporating the two in bioreactors that mimic the joint environment. Cells are then fed a medium with growth factors in it for a period 
of time until they form tissues. The tissues are then characterized to check if they represent the native tissue in structure and function. If not, 
the parameters used to engineer the tissue are revisited and the loop is repeated again. Here, tissue engineering of AC will be introduced. 
After that, the four pillars of tissue engineering (cells, scaffolds, growth factors, and bioreactors) will be discussed with questions that 
remain to be addressed. A section that discusses how engineered tissues are characterized will follow. Finally, the review ends with a 
summary of where the field is heading to realized quality AC tissues. This review is not meant to be comprehensive of existing literature. 

  Introduction
  

Articular cartilage (AC) is the tissue that wraps 
moving joints  (Bhosale and Richardson 2008). As a 
tissue, it provides lubrication (Guilak and Mow 2000) 
as well as load bearing in some joints like the knee 
(Wong and Carter 2003). To facilitate its function, the 
tissue is characterized by complex heterogeneous anat-
omy (Klein et al. 2007). As a tissue, AC is multiphasic, 
anisotropic, and viscoelastic (Mow et al. 1984, Mow 
and Guo 2002, Shieh and Athanasiou 2006). The tissue 
has three distinct zones. These are the superficial zone 
(SZ), the intermediate zone (IMZ) and the deep zone 
(DZ) (Shieh and Athanasiou 2006). The three zones 

gradate spatially in properties as a function of depth 
(Klein et al. 2007). For example, the density of chon-
drocytes, the specific AC cell type, is highest in the SZ 
and lowest in the DZ (Wong et al. 1996). Similarly, the 
properties of the extracellular matrix (ECM) are also 
depth dependent, with the lowest aggrecan and highest 
collagen concentrations in the SZ (Maroudas 1974). 
Furthermore, the surface zone protein (SZP) responsi-
ble for lubrication is abundant in the SZ and sparse in 
the IMZ and DZ (AR et al. 2001, TJ et al. 2003, EM et 
al. 2004, Yunsup et al. 2018). Collagen fibrils are pri-
marily parallel to the surface in the SZ, isotopically in-
termingled in the IMZ, and vertically aligned parallel 
to cellular columns in the DZ (LC et al. 2005). 

Based on their locations in the body, the majority 
of AC tissues are subject to significant mechanical 
stresses including compression, oscillating hydrostatic 
pressures (OHP), tensile stresses and shear forces 
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(Bachrach et al. 1998, Guilak and Mow 2000, 
Abusharkh et al. 2021, Abusharkh et al. 2022). Further-
more, AC tissues are subject to chemical stresses in-
cluding hypoxia (Lafont 2010). Compared to other 
body tissues, AC has least cell density (Wong and Car-
ter 2003). The tissue gains its white color from depriva-
tion of blood (Amr et al. 2020; Mallah et al. 2021). Fi-
nally, the tissue is devoid of nerves and lymph nodes 
(Fox et al. 2009). 

When injured, the tissue can’t repair itself (Fox et 
al. 2009) resulting in osteoarthritis (OA). OA is the 
most common joint disease and is characterized by 
pain, inflammation, swelling of the joint, bone remod-
eling and sclerosis, cartilage breakdown, ligament dys-
function, synovial hypertrophy, muscle atrophy and 
disability (Cui et al. 2020). The probability of develop-
ing OA increases with systemic factors such as age, 
race, genetics and local factors such as obesity, sex and 
injury (Zhang and Jordan 2010). OA is a global pan-
demic with approximately 654.1 million individuals 
living with knee OA in 2020 worldwide (Cui et al. 
2020; Jacobs 2021). OA imposes a huge socioeconom-
ical burden on the society costing more than $185.5 
billion annually in the U.S. (Bhosale 2008). There cur-
rently exists no therapies for OA. The disease is largely 
managed using uptake of oral non-steroidal anti-in-
flammatory drugs (NSAIDs) to kill the pain, anti-in-
flammatory or hyaluronic acid injections, topical med-
ications, physical therapy, weight loss, use of structural 
support devices or braces, use of comparative alterna-
tive medicinal drugs or nutraceuticals and eventually, a 
total knee replacement (TKR) surgery is needed (Chen 
et al. 2017; Amr et al. 2020; Mallah et al. 2021). A TKR 
takes place every minute in the US (Shmerling 2018). 

The lack of disease modifying drugs for OA calls 
for alternatives. Regenerative medicine approaches can 
provide a platform through which personalized AC tis-
sues can be engineered. Tissue engineering refers to 
forming mimetic tissues to these present in vivo in 
structure, properties and function. That is achieved 
through enabling cells to proliferate and grow on a 
scaffold with the use of growth factors in a bioreactor 
that mimics the in vivo environment of the tissue to be 
replaced. When AC tissue’s formation is concerned, 
many complex parameters come into play. To address 
them briefly, in the text below, these factors are divided 
into cells, scaffolds, growth factors, bioreactors, and 
characterizing resulting tissues. 

Cells 

When cells are concerned, one would want them to 
be easily obtained in high yields, possess hyaline carti-

lage phenotype or can commit to it, do not elicit im-
mune responses, and do not dedifferentiate in vitro. 
When the criteria above are considered, autologous 
chondrocytes native to the AC of the patient represents 
the most desired cell type to use (Hubka et al. 2014). 
However, isolating chondrocytes from a healthy joint 
in the body results in a local site morbidity. In compar-
ison, chondrocytes isolated from a diseased joint are 
often stressed and tend to dedifferentiate in vitro; re-
sulting in fibrillated cartilage growth that is mechani-
cally inferior to AC (Dehne et al. 2009). Other sources 
of cells including adipose derived stem cells (ADSCs)
(Hamid et al. 2018), bone -marrow mesenchymal stem 
cells (BMSCs)(Hubka et al. 2014), or induced pluripo-
tent stem cells (iPSCs) (Diederichs et al. 2019) provide 
alternative options. When compared, ADSCs can be 
obtained in higher yields than BMSCs while the latter 
differentiate into chondrocytes at a better rate (Hamid 
et al. 2018, Khurshid et al. 2018). The use of iPSCs 
comes with ethical concerns to be addressed. Irrespec-
tive of the type of stem cell to be used, the use of spe-
cific growth factors to induce chondrogenic differenti-
ation such as transforming growth factor beta (TGF-β) 
is needed (Bian et al. 2011; Nazempour et al. 2016). 
However, TGF-β is also a common inducing factor of 
osteogenesis; making it extremely hard to control the 
fate of stem cells (Chen et al. 2012). Finally, co-cul-
tures of chondrocytes and stem cells have also been 
proposed with the idea that chondrocytes assess stem 
cells in committing a chondrogenic lineage while stem 
cells help chondrocytes in proliferating (Acharya et al. 
2012; Abusharkh et al. 2021). The ratio at which both 
cell types are to be mixed at is yet to be determined.   

Scaffolds 

Equally important to the choice of cells is the 
choice and design of a scaffold to which cells grow on. 
Scaffolds should be biocompatible such as they do not 
elicit foreign immune responses, biodegradable/biore-
sorbable to be replaced by ECM formed upon implan-
tation, porous to allow for diffusion of nutrients, me-
chanically sound to support cellular proliferation and 
differentiation to produce ECM, have appropriate 
chemistry to enable cell adhesion and growth, and not 
cytotoxic (Bertrand and Hellmich 2009; Amr et al. 
2021). Scaffolds used in AC tissue engineering can be 
divided into natural and synthetic scaffolds. Natural 
scaffolds include decellularized ECM, collagen, fibrin, 
agarose, gelatin, hyaluronan, and silk fibers (Awad et 
al. 2004). Synthetic scaffolds includes Poly(glycolic 
acid), Poly(lactic acid), Poly(ethylene glycol), Poly(vi-
nyl alcohol), and copolymers (Bosworth and Downes 
2010; Luczynski et al. 2013). When compared to natu-
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ral scaffolds, synthetic scaffolds offer reproducibility 
and controllable superior mechanical properties, but 
usually lack cell-specific bioactivities such as cell ad-
hesion, migration and biodegradation. Natural poly-
mers on the other hand provide better cell adhesion and 
degradation but usually lack sound mechanical proper-
ties and processability (Mouw et al. 2005). Irrespective 
of the material of scaffold to be used, the scaffold prop-
erties need to be tailored to enable the engineering of 
AC tissues that are multilayered (Woodfield et al. 
2002). With that in mind, many studies attempted to 
vary the mechanical and chemical proporties of scaf-
folds to enable the growth of AC tissues that are zonal 
(Steele et al. 2014; Amr et al. 2022). Recent emphasis 
devoted to the potential of using emerging three-di-
mensional printing technologies to fabricate heteroge-
neous cell-laden scaffolds which are capable of sup-
porting cellular growth to yield mimicking AC tissues 
(Amr et al. 2021). Despite efforts, a complex, multi-
zonal, heterogenous, and multiphasic AC tissue does 
not exist. All existing engineered AC tissues available 
in the market lack to the ability recapitulate the com-
plex structure and mechanical function of native AC 
and as such provide limited clinical benefits. 

Growth Factors 

Next, key to success in any tissue's formation is the 
choice of appropriate growth factors, nutrients and sup-
plements (Ren et al. 2020). This is especially important 
when stem cells are to be guided to commit a chondro-
genic lineage (Danisovic et al. 2012). Growth factors 
are molecules critical for different processes taking 
place during tissue formation, repair and regeneration 
(Ren et al. 2020). The supplementation of growth fac-
tors to enable cellular growth is an art that is not well 
investigated in the literature. Most studies utilize a 
cocktail of desired growth factors and supplement cells 
with it on a frequently basis. While this is the norm 
practice, many questions critical to utilizing growth 
factors in optimized fashion are yet to be addressed. 
Example questions include: 1) should different growth 
factors be supplemented at different time points during 
culture?; 2) should different phenotypes of cells be 
complemented with different growth factors?; 3) 
should growth factors be augmented additively or se-
quentially to culture?; 4) What concentrations of 
growth factors should be used?; 5) should the concen-
tration of growth factors be changed as a function of 
time of culture?; and 6) Do growth factors work syner-
gistically or not? In summary, determining the frequen-
cy, duration, concentration and temporal times at which 
cells are to be fed by given growth factors are vital to 
obtaining desired outcomes for AC tissue engineering 

and largely unexplored.  

Example commonly used growth factors in AC tis-
sue engineering include TGF-β1, Bone morphogenetic 
proteins (BMP), insulin-like growth factor (IGF-1, 
FGF-2), non-essential amino acids, L-Proline, dexa-
methasone, ascorbate, and sodium pyruvate (Trippel 
1995; Nazempour et al. 2016). In addition to common 
growth factors, 45% of OA patients utilize off-shelf 
medications in hopes for pain relief (Amr et al. 2020, 
Mallah et al. 2021; Abusharkh et al. 2022). These come 
in the form of nutraceuticals which are food-derived 
additives that have a pharmaceutical value. The Ortho-
paedic Research Society (ORS) recommends patients 
to try a nutraceutical for two months and if felt benefits, 
use should be continued and vice versa if no benefits 
were attained. Available nutraceuticals for uptake by 
OA patients are not US Food and Drug Administration 
(FDA) approved. Validating the efficacy of nutraceuti-
cals in reducing inflammation associated with OA and 
promoting chondrogenesis is the responsibility of the 
scientific community. 

Bioreactors 

To successfully engineer an AC tissue, the cells 
and the scaffolds have to be housed in an environment 
that simulates that present in vivo. This is often done in 
a bioreactor. Bioreactors should enable controlled envi-
ronments, be scalable and allow for high throughput 
experiments or screening for drugs to be carried out (Fu 
et al. 2021). For example, to engineer an AC tissue ca-
pable of replacing a damaged AC tissue of the knee, a 
bioreactor that operates at 37 oC, 5% CO2, 2% O2 to 
represent hypoxia as well as capable of exposing cells 
to loads of oscillating compression, shear, and hydro-
static pressure often experienced in the knee will be 
ultimate. Designing a bioreactor that is able to capture 
the native environment of a joint for the variable OA 
phenotypes is an extreme challenge as each individual 
will experience different loads and environments from 
others. The ultimate goal will be to customize the de-
sign of bioreactors to suit personalized needs. 

Bioreactors used in engineering AC tissues are di-
vided into static and dynamic categories based on 
whether they enable mechanical stimuli to be intro-
duced into the reactor or not (Martin et al. 2004). While 
several types of dynamic bioreactors have been devel-
oped for use in AC tissue engineering including spinner 
flasks, rotating wall vessels, perfusion, magnetic reac-
tors, compression and stretching, membrane, and ultra-
sonic bioreactors (Cicek 2003, Nazempour et al. 2016; 
Nazempour et al. 2017; Abusharkh et al. 2021; 
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Abusharkh et al. 2022), none of the bioreactors that ex-
ist in the market allow for the native AC environment 
to be fully captured. 

Characterization of Resulting AC Engineered Tissue 
Once a tissue has been engineered, it is critical to 

assess how does it mimic the native tissue in structure, 
propoerties and function and is it suitable for in vivo 
implantation (Cohen et al. 1998; Bhosale and Richard-
son 2008). The structure of the AC is complex as de-
scribed earlier. A successful engineered tissue should 
capture its zonal complexity to enable appropriate de-
sired functions. The main two functions of AC are to 
provide lubrication as joints move and to withstand 
load in certain joints such as the knee (Becerra et al. 
2010). To check if the engineered AC tissue mimics a 
native AC in structure, histological staining for cell dis-
tribution, the key markers of AC (glycosaminoglycans 
(GAGs) and collagen formation, density and distribu-
tions) are carried out using an array of microscopic in-
vestigations (confocal microscopy, fluorescence mi-
croscopy, and scanning electron microscopy, atomic 
force microscopy (AFM))(Amr et al. 2022). Immuno-
histochemistry is also used to track the expression of 
key markers desired in AC such as collagen II (Amr et 
al. 2022). AFM's, nanoindentation and other tribologi-
cal techniques are also frequently used to check the lu-
brication capacity and the mechanical integrity of the 
AC tissue (Iscru et al. 2008; Lee et al. 2010; Sakai et al. 
2012; Amr et al. 2022). Success in engineering the tis-
sue is marked by mimicking the lubrication and zonal 
properties of the native healthy tissues. Furthermore, 
engineered tissues are characterized for the kinetics of 
degradation. Ideally, the degradation of the tissue 
should match the rate of tissue's formation and integra-
tion in vivo (Akhtar et al. 2017). Furthermore, quantita-
tive real time polymerase chain reaction (PCR) is com-
monly used to assess the expression of key markers 
(desired or to be avoided) upon tissue's growth. Com-
monly, PCR is used to assess the expression of genes 
responsible for coding for aggrecan, collagen II, lubri-
cin, SRY-Box Transcription Factor 9 (SOX9), and as-
sess markers responsible for inflammation, differentia-
tion of stem cells into other lineages such as osteocytes 
and adipocytes (Amr et al. 2020; Mallah et al. 2021). 
Finally, experiments using animal models that aim at 
assessing the ability of an engineered tissue to be inte-
grated within the injured AC in vivo are needed (Oli-
vos-Meza et al. 2017). 

The Outlook of Articular Cartilage Tissue Engineering     

 In summary, while tissue engineering ap-
proaches of AC are promising, realizing a functional 

AC tissue in vitro that is mimetic of the native AC tis-
sues in structure, function and properties is yet to be 
apprehended. This is largely influenced by the complex 
interplay between all the parameters that are to be opti-
mized to engineer such tissue. Scientists and research-
ers have a way to go to address key questions that range 
all the way from what types of cells to be used to how 
to design appropriate scaffolds that match the anatomy 
of the AC tissue. Bioreactors that mimic in vivo condi-
tions and allow for high throughput and scaled up pro-
duction of tissues are yet to be designed. Animal mod-
els that represent the human tissues closely are largely 
lacking. Small animals lack sufficient tissues to be ex-
plored and large animals are costly prohibitive. Efforts 
have to be merged in order for the scientific community 
to move forward and bring us closer to mimetic AC 
tissue of native AC. This is much needed to offer mo-
bility and life quality to approximately one third of the 
World’s population above the age of 40 who are suffer-
ing or will suffer from OA. 

Glossary of Acronyms Used in the Review 

Adipose derived stem cells (ADSCs)
Articular cartilage (AC) 
Atomic force microscopy (AFM)
Bone-marrow mesenchymal stem cells (BMSCs)
Bone morphogenetic proteins (BMP)
Deep zone (DZ)
Extracellular matrix (ECM)
Glycosaminoglycans (GAGs) 
Induced pluripotent stem cells (iPSCs) 
Insulin-like growth factor (IGF)
Intermediate zone (IMZ)
Non-steroidal anti-inflammatory drugs (NSAIDs) 
Oscillating hydrostatic pressures (OHP)
Orthopaedic Research Society (ORS) 
Osteoarthritis (OA)
Polymerase chain reaction (PCR) 
SRY-Box Transcription Factor 9 (SOX9)
Superficial zone (SZ)
Surface zone protein (SZP) 
Total knee replacement (TKR)
Transforming growth factor beta (TGF-β)

US Food and Drug Administration (US-FDA)
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